Nth Derivative Of a^(mx)
In this quick math tutorial you will learn how to find the Nth Derivative of a^(mx) by successive differentiation method. So please observe each step very carefully.
To Find `N_th` derivative of `a^(mx)`
Let
`y` = `a^(mx)`
Differentiating
`y` w.r.t `x` we get …..
`y_1` = m. `a^(mx)`.
`log a`
Now Differentiating
`y_1` w.r.t `x` we get………..
`y_2`
= `m^(2)`. `a^(mx)`. `(log a)^(2)`
Again Differentiating
`y_2` w.r.t `x` we get………..
`y_3`
= `m^(3)`. `a^(mx)`. `(log a)^(3)`
Again Differentiating
`y_3` w.r.t `x` we get………..
`y_4`
= `m^(4)`. `a^(mx)`. `(log a)^(4)`
Now we keep differentiating `y` successively until we reach
`n_th` derivative
So, `y_5`
= ……………………….
And `y_6`
= ………………………..
…………………………………….
…………………………………….
…………………………………….
Finally, `y_n` = `m^(n)`. `a^(mx)`. `(log a)^(n)`
______________________________________________________
No comments:
Post a Comment