Nth Derivative Of Log(ax+b)
Given y = log(ax+b)
Sol: Differentiating ‘y’ with respect to ‘x’ we get
y1y1 = 1(ax+b)1(ax+b) or y1y1 = a. (ax+b)-1(ax+b)−1
Now differentiating {y1}{y1} again we get:
y2y2 = (-1). a2a2 .
Differentiating y2y2 again w.r.t x we get
y3y3 = (-1). (-2). a3a3
again differentiating y3 again w.r.t x we get
y4 = (-1). (-2). (-3) a4
Now differentiating y w.r.t x successively until we find nth derivative of y
---------------------------------------------
----------------------------------------
--------------------------------------------
Finally we achieve nth derivative of y
which is:
yn = (-1). (-2). (-3)........................ upto (n-1) an
or nth derivative of y
yn = (n-1)!.an(ax+b)-n
Watch video solution here 👇
_________________________________________
No comments:
Post a Comment