Nth Derivative Of Log(ax+b)
Given y = log(ax+b)
Sol: Differentiating ‘y’ with respect to ‘x’ we get
`y_1` = `\frac{1}{(ax + b)}` or `y_1` = a. `(ax + b)^{ - 1}`
Now differentiating `{y_1}` again we get:
`y_2` = (-1). `a^{2}` .
Differentiating `y_2` again w.r.t x we get
`y_3` = (-1). (-2). `a^{ 3}`
again differentiating `y_3` again w.r.t x we get
`y_4` = (-1). (-2). (-3) `a^{ 4}`
Now differentiating `y` w.r.t x successively until we find `n_th` derivative of `y`
---------------------------------------------
----------------------------------------
--------------------------------------------
Finally we achieve `n_th` derivative of `y`
which is:
`y_n` = (-1). (-2). (-3)........................ upto (n-1) `a^{n}`
or `n_th` derivative of `y`
`y_n` = `\frac{(n - 1)!. a^n}{(ax + b)^{ - n}}`
Watch video solution here 👇
_________________________________________
No comments:
Post a Comment