Nth Derivative Of Log(ax+b) | Successive Derivatives Solved Examples - Math Traders

Latest

Nth Derivative Of Log(ax+b) | Successive Derivatives Solved Examples

Nth Derivative Of Log(ax+b) 

in this quick tutorial we will learn how to find nth derivative of a logarithmic function like " Log( ax+b )" by successive differentiation method. So observe each and every step very carefully. 


 Given            y = log(ax+b)

Sol: Differentiating ‘y’ with respect to ‘x’ we get


y1y1 = 1(ax+b)1(ax+b)             or  y1y1  = a. (ax+b)-1(ax+b)1


Now differentiating {y1}{y1} again we get:


y2y2 = (-1). a2a2 .  (ax+b)-2(ax+b)2


Differentiating y2y2 again w.r.t x we get 


y3y3 = (-1). (-2). a3a3  (ax+b)-3


again differentiating y3 again w.r.t x we get 


y4 = (-1). (-2). (-3) a4  (ax+b)-4


Now differentiating y w.r.t x successively until we find nth derivative of y

---------------------------------------------


----------------------------------------


--------------------------------------------


Finally we achieve nth derivative of y 


which is: 


yn = (-1). (-2). (-3)........................ upto (n-1) an  (ax+b)-n


or nth derivative of y


yn = (n-1)!.an(ax+b)-n


_________________________________________

            Watch video solution here 👇

_________________________________________



No comments:

Post a Comment