To Find n_th derivative of e^(2x) Sin3x Sin2x
In this quick tutorial we will learn how to find n_th derivative of a function which is in the form of e^ax. sinbx. sincx. So let us understand steps to reach n_th derivative very carefully.
Solution: let u = `e^(2x)` and v = `Sin3x .Sin2x`
Since we know that:
`SinA.SinB` = `\[\frac{1}{2}\]` {cos(A-B) - cos(A+B)}
Now let: A = 3X And B = 2X
Therefore, `(A-B)` = `X ` and `(A+B)` = `5X`
Also `y = e^{x}.\frac{1}{2}.{cos(A-B) - cos(A+B)}`
Or `y = \frac{1}{2}.{e^{x}.cosX - e^{x}.cos5X}`
`N_th` derivative of `e^{Ax}.Cos(Bx+c)` is:
= `(A^{2}+B^{2})^{n/2}.e^{Ax}.Cos(Bx+C+n.tan^{-1}\frac{B}{A})`
So `n_th` derivative of `\frac{1}{2}.[e^{2x}.CosX\]` is:
= `\frac{1}{2}.(2^{2}+1^{2})^{n/2}. e^{2x}. Cos(X+n.tan^{-1}\frac{1}{2})`
= `\frac{1}{2}.5^{2}. e^{2x}.Cos(X+n.tan^{-1}\frac{1}{2})`
Similarly `n_th` derivative of `e^{2x}.Cos5X` as:
= `\frac{1}{2}.29^{n/2}. e^{2x}.Cos(5X+n.tan^{-1}\frac{5}{2})`
Finally `N_th` derivative of `e^(2x) Sin3x Sin2x` is:
= `\frac{1}{2}.5^{2}. e^{2x}.Cos(X+n.tan^{-1}\frac{1}{2})` - `\frac{1}{2}.29^{n/2}. e^{2x}.Cos(5X+n.tan^{-1}\frac{5}{2})`
No comments:
Post a Comment