Nth Derivative Of `e^{2x} Sin3x.Sin2x` | Leibnitz Theorem Of Nth Derivatives Examples - Math Traders

Latest

Nth Derivative Of `e^{2x} Sin3x.Sin2x` | Leibnitz Theorem Of Nth Derivatives Examples

Nth Derivative of e^(2x) sin3x sin2x | Solved Example

To Find Nth Derivative of e2x sin3x sin2x

In this tutorial, we learn how to find the nth derivative of expressions involving eax · sin(bx) · sin(cx) using identities and standard nth derivative formulas.

Solution

Let
u = e2x
v = sin3x · sin2x

Using Trigonometric Identity

sinA · sinB = ½ [ cos(A − B) − cos(A + B) ]
A = 3x
B = 2x

∴ A − B = x
∴ A + B = 5x

Rewrite the Function

y = e2x · ½ [ cos x − cos 5x ]
= ½ [ e2x cos x − e2x cos 5x ]

Standard Formula

If y = eAx cos(Bx + C), then

dny/dxn = (A² + B²)n/2 eAx cos(Bx + C + n tan−1(B/A))

Nth Derivative of e2x cos x

= ½ · 5n/2 e2x cos(x + n tan−1(1/2))

Nth Derivative of e2x cos 5x

= ½ · 29n/2 e2x cos(5x + n tan−1(5/2))

Final Answer

½ · 5n/2 e2x cos(x + n tan−1(1/2)) − ½ · 29n/2 e2x cos(5x + n tan−1(5/2))

Recommended Mathematics Articles

Some links on this website may be affiliate links. If you purchase through them, we may earn a small commission at no extra cost to you.