Nth Derivative Of <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math" id="MJXp-Span-1"><span class="MJXp-mstyle" id="MJXp-Span-2"><span class="MJXp-msup" id="MJXp-Span-3"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-4" style="margin-right: 0.05em;">e</span><span class="MJXp-mrow MJXp-script" id="MJXp-Span-5" style="vertical-align: 0.5em;"><span class="MJXp-mn" id="MJXp-Span-6">2</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-7">x</span></span></span><span class="MJXp-mrow" id="MJXp-Span-8"><span class="MJXp-mi" id="MJXp-Span-9">Sin</span><span class="MJXp-mn" id="MJXp-Span-10">3</span></span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-11">x</span><span class="MJXp-mo" id="MJXp-Span-12" style="margin-left: 0em; margin-right: 0.222em;">.</span><span class="MJXp-mrow" id="MJXp-Span-13"><span class="MJXp-mi" id="MJXp-Span-14">Sin</span><span class="MJXp-mn" id="MJXp-Span-15">2</span></span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-16">x</span></span></span></span><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML MJXc-processed" tabindex="0" style="font-size: 129%;"><span id="MJXc-Node-1" class="mjx-math"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mstyle"><span id="MJXc-Node-4" class="mjx-mrow"><span id="MJXc-Node-5" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.224em; padding-bottom: 0.28em;">e</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.584em; padding-left: 0px; padding-right: 0.071em;"><span id="MJXc-Node-7" class="mjx-mrow" style=""><span id="MJXc-Node-8" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.39em; padding-bottom: 0.335em;">2</span></span><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.224em; padding-bottom: 0.28em;">x</span></span></span></span></span><span id="MJXc-Node-10" class="mjx-mrow MJXc-space1"><span id="MJXc-Node-11" class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.39em;">Sin</span></span><span id="MJXc-Node-12" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.39em; padding-bottom: 0.39em;">3</span></span></span><span id="MJXc-Node-13" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.224em; padding-bottom: 0.28em;">x</span></span><span id="MJXc-Node-14" class="mjx-mo" style="padding-right: 0.222em;"><span class="mjx-char MJXc-TeX-main-R" style="margin-top: -0.163em; padding-bottom: 0.335em;">.</span></span><span id="MJXc-Node-15" class="mjx-mrow"><span id="MJXc-Node-16" class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.39em;">Sin</span></span><span id="MJXc-Node-17" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.39em; padding-bottom: 0.335em;">2</span></span></span><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.224em; padding-bottom: 0.28em;">x</span></span></span></span></span></span></span><script type="math/asciimath" id="MathJax-Element-1">e^{2x} Sin3x.Sin2x</script> | Leibnitz Theorem Of Nth Derivatives Examples - Math Traders

Latest

Nth Derivative Of e2xSin3x.Sin2xe2xSin3x.Sin2x | Leibnitz Theorem Of Nth Derivatives Examples

To Find n_th derivative of e^(2x) Sin3x Sin2x 

In this quick tutorial we will learn how to find n_th derivative of a function which is in the form of e^ax. sinbx. sincx. So let us understand steps to reach n_th derivative very carefully.

Solution: let             u = e2xe2x                     and                     v = Sin3x.Sin2xSin3x.Sin2x


Since we know that: 

SinA.SinBSinA.SinB = [12][12] {cos(A-B) - cos(A+B)}



Now let:                 A = 3X            And                 B = 2X


Therefore,         (A-B)(AB) = XX   and    (A+B)(A+B) = 5X5X


Also      y=ex.12.{cos(A-B)-cos(A+B)}y=ex.12.{cos(AB)cos(A+B)}


Or                  y=12.{ex.cosX-ex.cos5X}y=12.{ex.cosXex.cos5X}


              
NthNth derivative of   eAx.Cos(Bx+c)eAx.Cos(Bx+c) is:  


                   =  (A2+B2)n2.eAx.Cos(Bx+C+n.tan-1BA)(A2+B2)n2.eAx.Cos(Bx+C+n.tan1BA)


So nthnth  derivative of   12.[e2x.CosX]12.[e2x.CosX] is:


= 12.(22+12)n2.e2x.Cos(X+n.tan-112)12.(22+12)n2.e2x.Cos(X+n.tan112)


=   12.52.e2x.Cos(X+n.tan-112)12.52.e2x.Cos(X+n.tan112)

 
Similarly nthnth derivative of e2x.Cos5Xe2x.Cos5X as:


=   12.29n2.e2x.Cos(5X+n.tan-152)12.29n2.e2x.Cos(5X+n.tan152)


Finally NthNth derivative of  e2xSin3xSin2xe2xSin3xSin2x is:



12.52.e2x.Cos(X+n.tan-112)12.52.e2x.Cos(X+n.tan112)  -   12.29n2.e2x.Cos(5X+n.tan-152)12.29n2.e2x.Cos(5X+n.tan152)


Nth Derivative Of `e^{2x} Sin3x.Sin2x`





No comments:

Post a Comment