Integration of e^ax cosbx || Integration by parts || important Integrals for competitive and board exams - Math Traders

Latest

Integration of e^ax cosbx || Integration by parts || important Integrals for competitive and board exams

                                       Chapter: Integration by parts


Q2. Find the integration of `\e^{ax}\cosbx`


Sol: Let ` I = \e^{ax}\cosbx`



From integration by parts method



`\1^{st}part\int {2^{nd}part - } \int {(\frac{d}{{dx}}} {1^{st}}part\int {{2^{nd}}partdx)dx} \]` …………………(1)



So, let `1^{st}part = \e^{ax}`        And        `2^{nd}part = cosbx`



Now put these values in eq (1) we get-



` I =\int\e^{ax}\cosbx`



 I = `e^{ax}\int \cos bx -- \int (\frac{d}{dx} e^{ax}\int \cos bxdx)dx `



 I =  ` \frac{1}{b}e^{ax}.\sinbx - \int a e^{ax}\frac{\sinbx}{b}dx`



 I =  `\frac{1}{b}e^{ax}.\sinbx - \frac{a}{b}[e^{ax}\int \sinbxdx  - \int (\frac{d}{dx} e^{ax}\int \sinbxdx)dx]`



 I =  ` \frac{1}{b}e^{ax}.\sinbx - \frac{a}{b}[-e^{ax}\frac{\cosbx}{b} + a\int {e^{ax}.\frac{\cosbx}{b}dx} ]`



I =  `\frac{1}{b}e^{ax}.\sinbx + \frac{a}{b^{2}}e^{ax}\cosbx` - `\frac{a^{2}}{b^{2}}\int e^{ax}.\cosbxdx `



 I =  `\frac{1}{b}e^{ax}.\sinbx + \frac{a}{b^{2}}e^{ax}\cosbx` - `\frac{a^{2}}{b^{2}}. I`



 I + `\frac{a^{2}}{b^{2}}.I`=   `\frac{1}{b}e^{ax}.\sinbx + \frac{a}{b^{2}}e^{ax}\cosbx`

   


  I.(`\frac{a^{2}+b^{2}}{b^{2}})` =  `e^{ax}. \frac{b.sinbx + a.cosbx}{b^{2}}`   



Or   I = `e^{ax}. [\frac{b.sinbx + a.cosbx}{a^{2}+b^{2}}]` 



Which is our final answer for the integration of `\e^{ax}\cosbx`


Similarly we will also find integration of  `\e^{ax}\sinbx` 


                                                                                   👉 integration of  `\e^{ax}\sin bx`
                        

                                                    


No comments:

Post a Comment