Loading [MathJax]/jax/output/CommonHTML/jax.js
Integration of e^ax cosbx || Integration by parts || important Integrals for competitive and board exams - Math Traders

Latest

Integration of e^ax cosbx || Integration by parts || important Integrals for competitive and board exams

                                       Chapter: Integration by parts


Q2. Find the integration of eaxcosbx


Sol: Let I=eaxcosbx



From integration by parts method



1stpart{2ndpart-}{(d{dx}}{1st}part{{2nd}partdx)dx}] …………………(1)



So, let 1stpart=eax        And        2ndpart=cosbx



Now put these values in eq (1) we get-



I=eaxcosbx



 I = eaxcosbx--(ddxeaxcosbxdx)dx



 I =  1beax.sinbx-aeaxsinbxbdx



 I =  1beax.sinbx-ab[eaxsinbxdx -(ddxeaxsinbxdx)dx]



 I =  1beax.sinbx-ab[-eaxcosbxb+a{eax.cosbxbdx}]



I =  1beax.sinbx+ab2eaxcosbx - a2b2eax.cosbxdx



 I 1beax.sinbx+ab2eaxcosbx - a2b2.I



 I + a2b2.I=   1beax.sinbx+ab2eaxcosbx

   


  I.(a2+b2b2)eax.b.sinbx+a.cosbxb2   



Or   I = eax.[b.sinbx+a.cosbxa2+b2] 



Which is our final answer for the integration of eaxcosbx


Similarly we will also find integration of  eaxsinbx 


                                                                                   👉 integration of  eaxsinbx
                        

                                                    


No comments:

Post a Comment