Chapter: Integration by parts
Q2. Find the integration of eaxcosbx
Sol: Let I=eaxcosbx
From integration by parts method
1stpart∫{2ndpart-}∫{(d{dx}}{1st}part∫{{2nd}partdx)dx}] …………………(1)
So, let 1stpart=eax And 2ndpart=cosbx
Now put these values in eq (1) we get-
I=∫eaxcosbx
I = eax∫cosbx--∫(ddxeax∫cosbxdx)dx
I = 1beax.sinbx-∫aeaxsinbxbdx
I = 1beax.sinbx-ab[eax∫sinbxdx -∫(ddxeax∫sinbxdx)dx]
I = 1beax.sinbx-ab[-eaxcosbxb+a∫{eax.cosbxbdx}]
I = 1beax.sinbx+ab2eaxcosbx - a2b2∫eax.cosbxdx
I
I + a2b2.I= 1beax.sinbx+ab2eaxcosbx
I.(a2+b2b2) = eax.b.sinbx+a.cosbxb2
Or I = eax.[b.sinbx+a.cosbxa2+b2]
Which is our final answer for the integration of eaxcosbx
Similarly we will also find integration of eaxsinbx
No comments:
Post a Comment