Processing math: 100%
integration by partial fraction | integral of <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math" id="MJXp-Span-1"><span class="MJXp-mstyle" id="MJXp-Span-2"><span class="MJXp-mo" id="MJXp-Span-3" style="margin-left: 0em; margin-right: 0.111em;"><span class="MJXp-largeop MJXp-int">∫</span></span><span class="MJXp-mfrac" id="MJXp-Span-4" style="vertical-align: 0.25em;"><span class="MJXp-box"><span class="MJXp-mrow" id="MJXp-Span-5"><span class="MJXp-mrow" id="MJXp-Span-6"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-7">d</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-8">x</span></span></span></span><span class="MJXp-box" style="margin-top: -0.9em;"><span class="MJXp-denom"><span><span class="MJXp-rule" style="height: 1em; border-top: none; border-bottom: 1px solid; margin: 0.1em 0px;"></span></span><span><span class="MJXp-box"><span class="MJXp-mrow" id="MJXp-Span-9"><span class="MJXp-msup" id="MJXp-Span-10"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-11" style="margin-right: 0.05em;">x</span><span class="MJXp-mn MJXp-script" id="MJXp-Span-12" style="vertical-align: 0.5em;">2</span></span><span class="MJXp-mo" id="MJXp-Span-13" style="margin-left: 0.267em; margin-right: 0.267em;">-</span><span class="MJXp-mn" id="MJXp-Span-14">4</span></span></span></span></span></span></span></span></span></span><script type="math/asciimath" id="MathJax-Element-1">\int \frac{dx}{x^2 - 4}</script> | Integration Solved Examples - Math Traders

Latest

integration by partial fraction | integral of dxx2-4 | Integration Solved Examples

 

                               Integration - By Partial Fraction 

 *Please rotate your mobile screen for better view

*Integration of dxx2-4

Sol: Given I =  dxx2-4

     Let      1x2-4   =  1(x-2)(x+2)                

Now decomposing in partial fractions

1(x-2)(x+2) = Ax-2 +Bx+2 .....................(1)

                                          = A.(x+2)+B.(x-2)x2-4

OR                                    = (A+B).x+(2A-2B)x2-4

Now Comparing coefficients of 'x' and constants on both sides of equal sign, we get

          A+B = 0     i.e.,     A = -B ...............(2)

&       2A - 2B = 1 ............(3)

Now putting the value of ' A' from equation (2) to equation (3) we get.

        -2B - 2B = 1

OR            -4B = 1        =>        B = - 14

&             from the value of 'B ' we get 'A' as:        A = 14

Now substituting these values in equation (1) we get.

1(x-2)(x+2) = 141x-2 - 14 1x+2

Now performing integration on both sides w.r.t x.

                                         = 14dxx-2 - 14dxx+2

                                         = 14.log(x-2) - 14.log(x+2) + c

OR                             I = 14.logx-2x+2 + c


                                                
integral of `\int \frac{dx}{x^2 - 4}`


See Also:  
                                                                                                           





2 comments: