Integration of 1/(x² − 4) Using Partial Fractions
Please rotate your mobile screen for better view.
Problem
Evaluate:
∫ dx / (x² − 4)
∫ dx / (x² − 4)
Solution
Given:
I = ∫ dx / (x² − 4)
First, factor the denominator:
x² − 4 = (x − 2)(x + 2)
Step 1: Partial Fraction Decomposition
1 / (x − 2)(x + 2) = A / (x − 2) + B / (x + 2)
1 = A(x + 2) + B(x − 2)
Step 2: Comparing Coefficients
1 = (A + B)x + (2A − 2B)
Comparing coefficients of x and constants:
A + B = 0 → A = −B
2A − 2B = 1
2A − 2B = 1
Substituting A = −B:
−2B − 2B = 1
−4B = 1
B = −1/4
−4B = 1
B = −1/4
Hence:
A = 1/4
Step 3: Substituting Values
1 / (x − 2)(x + 2) =
1/4 · 1/(x − 2) − 1/4 · 1/(x + 2)
1/4 · 1/(x − 2) − 1/4 · 1/(x + 2)
Related Calculus Problems
Step 4: Integrating
I = 1/4 ∫ dx / (x − 2) − 1/4 ∫ dx / (x + 2)
I = 1/4 · log|x − 2| − 1/4 · log|x + 2| + C
I = 1/4 · log | (x − 2)/(x + 2) | + C
This is the required result.