Nth Derivative of x/((x−a)(x−b)(x−c)) Using Partial Fractions - Math Traders

Latest

Nth Derivative of x/((x−a)(x−b)(x−c)) Using Partial Fractions

Nth Derivative of x / (x-a)(x-b)(x-c)

Nth Derivative of x / (x − a)(x − b)(x − c)

To find the required nth derivative of the given function, we first decompose it using the Partial Fraction Method. After decomposition, we apply the successive differentiation method.

Step 1: Partial Fraction Decomposition

Let

x / (x − a)(x − b)(x − c) = A / (x − a) + B / (x − b) + C / (x − c)
x = A(x − b)(x − c) + B(x − a)(x − c) + C(x − a)(x − b)

Step 2: Finding Constants A, B and C

Putting x = a:
a = A(a − b)(a − c)
A = a / (a − b)(a − c)
Putting x = b:
b = B(b − a)(b − c)
B = b / (b − a)(b − c)
Putting x = c:
c = C(c − a)(c − b)
C = c / (c − a)(c − b)

Step 3: Decomposed Form

x / (x − a)(x − b)(x − c) =

a / (a − b)(a − c) · 1/(x − a)
+ b / (b − a)(b − c) · 1/(x − b)
+ c / (c − a)(c − b) · 1/(x − c)

Step 4: Nth Derivative

We know that:

dn/dxn [1 / (x − a)] = (−1)n · n! / (x − a)n+1

Applying this to each term:

dn/dxn [ x / (x − a)(x − b)(x − c) ] =

(−1)n n! · [
a / (a − b)(a − c)(x − a)n+1
+ b / (b − a)(b − c)(x − b)n+1
+ c / (c − a)(c − b)(x − c)n+1 ]

This is the required nth derivative.