Nth Derivative of x / (x − a)(x − b)(x − c)
To find the required nth derivative of the given function, we first decompose it using the Partial Fraction Method. After decomposition, we apply the successive differentiation method.
Step 1: Partial Fraction Decomposition
Let
x / (x − a)(x − b)(x − c) = A / (x − a) + B / (x − b) + C / (x − c)
x / (x − a)(x − b)(x − c) = A / (x − a) + B / (x − b) + C / (x − c)
x = A(x − b)(x − c) + B(x − a)(x − c) + C(x − a)(x − b)
Step 2: Finding Constants A, B and C
Putting x = a:
a = A(a − b)(a − c)
A = a / (a − b)(a − c)
a = A(a − b)(a − c)
A = a / (a − b)(a − c)
Putting x = b:
b = B(b − a)(b − c)
B = b / (b − a)(b − c)
b = B(b − a)(b − c)
B = b / (b − a)(b − c)
Putting x = c:
c = C(c − a)(c − b)
C = c / (c − a)(c − b)
c = C(c − a)(c − b)
C = c / (c − a)(c − b)
Step 3: Decomposed Form
x / (x − a)(x − b)(x − c) =
a / (a − b)(a − c) · 1/(x − a)
+ b / (b − a)(b − c) · 1/(x − b)
+ c / (c − a)(c − b) · 1/(x − c)
a / (a − b)(a − c) · 1/(x − a)
+ b / (b − a)(b − c) · 1/(x − b)
+ c / (c − a)(c − b) · 1/(x − c)
Recommended Calculus Problems
Step 4: Nth Derivative
We know that:
dn/dxn [1 / (x − a)] = (−1)n · n! / (x − a)n+1
Applying this to each term:
dn/dxn [ x / (x − a)(x − b)(x − c) ] =
(−1)n n! · [
a / (a − b)(a − c)(x − a)n+1
+ b / (b − a)(b − c)(x − b)n+1
+ c / (c − a)(c − b)(x − c)n+1 ]
(−1)n n! · [
a / (a − b)(a − c)(x − a)n+1
+ b / (b − a)(b − c)(x − b)n+1
+ c / (c − a)(c − b)(x − c)n+1 ]
This is the required nth derivative.